

Deltaflux

Deltaflux control valve is an ideal solution for all fluid control applications where high differential pressure or great flow rates are involved.

The refined design of the rotating trim allows offering simultaneously high flow rate coefficients Cv and minimum pressure drops in fully open position, thus creating a unique combination of capacity and rangeability.

Thanks to its versatility and to the available range, Deltaflux is the ideal solution for all special applications, as well as for use at high and low temperatures, and in aggressive environments. Considering its features, Deltaflux is the ideal primary element for ESD (Emergency Shut Down) and HIPPS (High Integrity Pipeline Protection System) systems.

Fields of application:

- Natural gas industry
- Energy
- Petrochemical industry
- Water transport

GLOSSARY

Capacity: Here it is meant the capacity of keeping constant the flow rate that a valve can provide. The capacity is linked to the Cv coefficient of the valve.

Rangeability: Rangeability is defined as the ratio between nominal flow rate coefficient Cv of the valve and controllable Cv. During plant design, the attainment of the highest possible rangeability factor (200-1) is obviously sought.

Deltaflux valves are control valves equipped with rotating trim, which allows attaining a unique solution for those applications involving great fluid flow rates. **Deltaflux** valves can be used within systems controlling the flow rate or pressure on pipelines, limiting the flow rate at LNG terminal output, controlling the pressure on primary reduction plants or, thanks to the limited pressure drops involved, as control element on ESD and HIPPS emergency systems.

The wide range of materials and trims, both standard and customized, as well as of pneumatic, electric and electro-pneumatic actuators, allows selecting of specific control valve for each application.

DESIGNED
TO MEET ALL
NEEDS

- HIGH CAPACITY
- RANGEABILITY RATIO (200:1)
- LOW NOISE LEVEL

- USE VERSATILITY
- METAL-METAL TIGHTNESS
- LOW PRESSURE DROP

Main features Deltaflux

Deltaflux control valves are equipped with special regulating trims making it suitable for applications involving gases or liquids. Moreover, the trim is studied in order to hinder the formation of dirt deposits inside the same

The trim configuration and the special geometries of Deltaflux allow attaining a high rangeability; moreover, they avoid overpressure within the valve body, thus obtaining a high noise reduction and a longer life-cycle of the sealing parts.

Deltaflux valves are a "Bolted body" project, thus they are easily maintainable. Sealing parts are interchangeable: Moreover, assembling of any kind of controls and accessories is quite easy.

Deltaflux valves, in their standard version, have been developed for a design temperature ranging from -29°C and + 121°C and for a storage temperature ranging from - 40 and + 60°C.

Deltaflux control valves are available up to a 36" diameter, thus allowing regulating also great fluid flow rates.

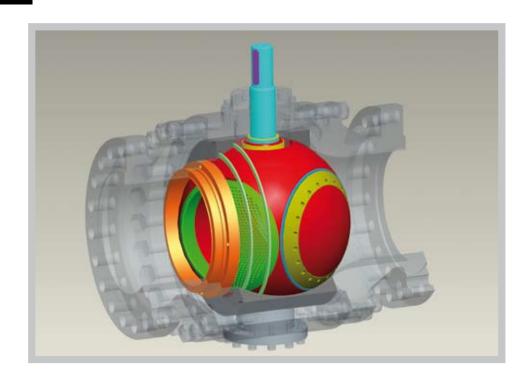
HIPPS (High Pressure Protection System) application:

Deltaflux

Deltaflux valves, thanks to its special customized design can be used for HIPPS system for both gas and liquid medium. In this applications it is requested a quick closure time (t < 3 sec) avoiding damages for the water hummer effects on the valves or on the plant.

Thanks to DELTAFLUX valves it is possible to re-open the flow after the shut off in a way that can grand a modular re-pressurization of the downstream pipe to protect all the instrumentation. This can be reached without the use of a by-pass.

DELTAFLUX valves are complete of PFD (probability of Failure on Demand) Assessment Report – SIL 3.


Reference regulations

Deltaflux

- Rating according to ASME B 16.34 (ANSI 150, 300, 600, 900, 1500);
- "End to end dimension" according to API 6D;
- "End flanges" according to ASME B16.5;
- Tightness class FCI 70-2-2003;
- NACE MR0175-2002.

Deltaflux

MATERIALS	Deltaflux
-----------	-----------

Body	ASTM A 350 LF2
Bonnets	ASTM A 350 LF2
Bolts	ASTM A 193 – B7 ASTM A 194 – 2H
Seat	AISI 410 + TUNGSTEN CARBIDE
Ball	ASTM A 105
Stem	Steel UNS 17400
Control trim	S235JR + ENP 20µm
Seals	Nitrile – Viton

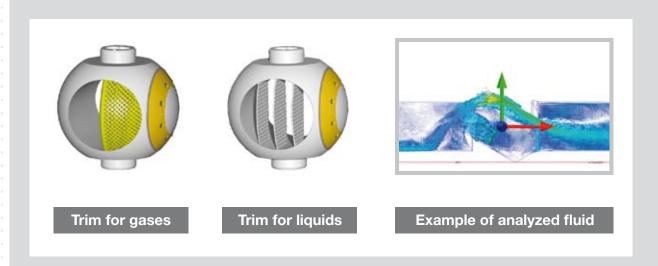
The above listed features refer to normal production execution.

Special executions and materials can be supplied, upon request, for specific uses.

Control applications for gases and liquids

Deltaflux

The need to transfer large flow rates with minimal pressure drops on the control valve requires a combination of wide capacity and high rangeability.


Valves with a rotating trim are characterized by a high capacity associated to a relevant recovery.

Within the framework of typical pressure reduction applications, high recovery results in conditions of critical heads, high speed and, consequently, noise associated to different nature problems.

Deltaflux valve is equipped with trims characterized by a low recovery factor, thus offering the optimal solution to such problems also under conditions of high differential pressures.

Deltaflux valve can be used also to control liquids.

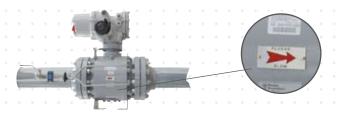
Thanks to a special trim, it remarkably reduces negative effects of cavitations, such as the tear of surfaces close to the involved area, and the emission of noise typical of this phenomenon.

GLOSSARY

Cavitation: It occurs every time the static pressure downstream is greater than the liquid vapor pressure, and when the static pressure, in any point inside the valve, is lower than or equal to the liquid vapor pressure.

Vapor bubbles do form in the minimum static pressure area and then collapse, imploding as they pass downstream, in an area with higher static pressure, thus generating noise.

The noise generated by cavitation is frequently described as a rattling sound similar to that which would be crated if gravel were present in the fluid.



ONE-WAY & TWO-WAY

Deltaflux

Standard Deltaflux valves are available in both the one-way and two-way version.

The standard version is one-way and assures a tightness class V according to FCI 70-2-2003 in the flow direction. In the two-way version, the valve, equipped with specific seal for each flow direction, assures a tightness class V in the main flow direction and a tightness class IV for the reverse flow.

PNEUMATIC ACTUATORS

Deltaflux control valves can be driven by pneumatic actuators.

Pneumatic actuators can be supplied with both simple action and double action, for any valve size. Moreover, they can be equipped with accessories able to meet any application or request requirements.

ELECTRIC ACTUATORS

Deltaflux control valves can be driven also by electric actuators.

The electric actuators used are available in both the multi-revolution and modulating version; both versions are characterized by all those features making them easy to use both locally and remotely.

Note

Each accessory is available upon customer's request for all valve sizes and configurations.

Moreover, it is possible to customize the production or develop solutions requested by the customer.

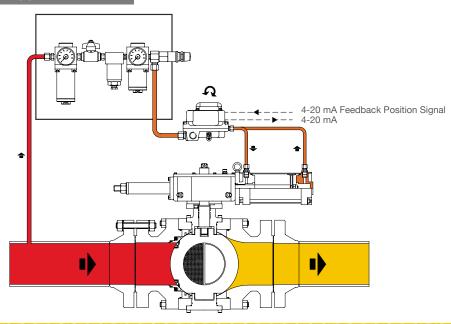
Always refer to Pietro Fiorentini S.p.A. for any explanation or feasibility study.

Deltaflux for regulating using a pneumatic signal Deltaflux

Actuator supplied with Natural Gas and driven by 4-20 mA signal.

In this configuration, Deltaflux control valve is characterized by the use of the electro-pneumatic positioner, installed on the Double Action Pneumatic control.

The positioner works in modulating mode thanks to the electric control signal (4-20 mA) coming from a pulse generator.


The electro-pneumatic positioner is in charge of assuring an excellent proportionality between the electro-pneumatic control signal feeding the valve and the actuator stroke.

The system can consists also of a reduction panel, equipped with filter and pressure reduction unit, to feed the electro-pneumatic positioner.

Moreover, it is possible to install also an anti-freeze pressure regulator directly on the main line (for applications using natural gas).

The system can be feed with both instrument air and line natural gas.

Layout of a gas application

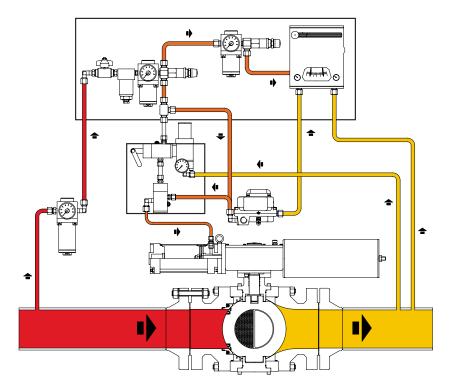
Deltaflux for regulating using a pneumatic signal

Deltaflux

Actuator supplied with Natural gas and driven by pneumatic controller.

In this configuration, Deltaflux control valve, thanks to the use of an instrument suitable to control variables such as the pressure of liquids or gases, is able to compare the fluid pressure measured value with the setpoint value.

The comparison between the two quantities generates a standard modulating signal of 3-15 psi that in its turn controls the pneumatic positioner assuring an excellent proportionality between the pneumatic signal feeding the valve and the actuator stroke.


Layout of a gas application Deltaflux

Deltaflux for regulating using a pneumatic signal and a shut off system

It is possible to install a safety device (line off), which immediately blocks gas flow, when due to a fault downstream pressure increases and reaches the maximum pre-set value for its operation.

Otherwise, the device can be enabled also manually by bringing Deltaflux valve immediately to closed (shut off) position thanks to the pneumatic control by simple action (fail to close).

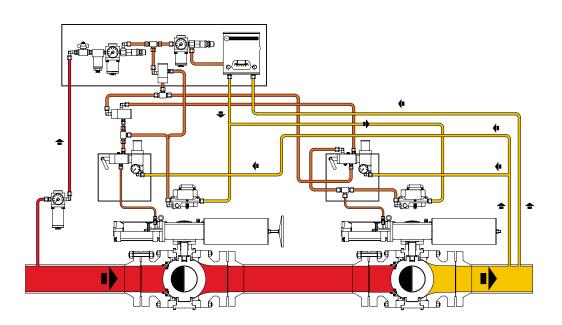
Layout of a gas application

Deltaflux for regulating using a pneumatic signal and an in-line monitor

Deltaflux

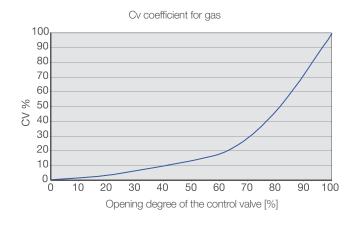
Deltaflux

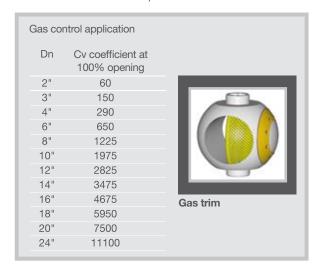
In this case, the Monitor emergency control valve is installed upstream of the service control valve, in the gas flow direction.


The monitor is an emergency control valve, which is in charge of taking over the main control valve operation, in case this latter due to an anomaly or fault allows the output pressure to reach the calibration pressure set for the monitor tripping.

The two devices are actually identical in terms of mechanical parts.

Only, the monitor has a tripping calibration higher than that of the main control valve.


Layout of a gas application


Flow rate coefficient


Deltaflux

Here below there is the characteristic graphical representation of Cv of Deltaflux control valves.

Given data are obtained by tests carried out both at internal laboratories and at primary international laboratories. The tables provide the Cv value at 100% of opening for each ball passage diameter.

Note: To verify the dimensioning and, in detail, for the dimensioning of Deltaflux control valves bigger than 24", always refer to Pietro Fiorentini S.p.A.

This table provides the flow rate coefficient Cv, the recovery factor, and the incipient cavitation factor to be used in the formulas according to the valve opening degree.

Opening angle	Gas trim				Liquid trim	
	Cv multiplier factor	Recovery factor F	Incipient cavitation factor Kc	Cv multiplier factor	Recovery factor F	Incipient cavitation factor Kc
10	0,007	0,91	0,83	0,001	0,96	0,92
15	0,023	0,91	0,83	0,005	0,96	0,92
20	0,035	0,9	0,81	0,01	0,96	0,92
30	0,071	0,89	0,79	0,03	0,96	0,92
40	0,14	0,87	0,75	0,07	0,95	0,9
50	0,23	0,84	0,7	0,125	0,94	0,87
60	0,34	0,8	0,63	0,24	0,91	0,8
70	0,47	0,74	0,51	0,42	0,84	0,64
80	0,67	0,66	0,4	0,67	0,71	0,4
90	1,00	0,55	0,55	1,00	0,55	0,25

EXAMPLE

Deltaflux control valve, Trim for gas, DN 12" at 30 degrees of opening angle:

Factor $Cv = 2825 \times 0.071 = 200.5$

Recovery factor $\mathbf{F} = 0.89$

Incipient cavitation factor **Kc** = 0.79

Overall dimensions of full bore Deltaflux control valves

Deltaflux

Fig. 230-1

	Overall	dimen	sions	and si	izes in	mm	Weigh	t in Kg	Valve	e top
	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**
	2"	178	191	216	100	51	26	24	CH22	F10
	3"	203	216	283	125	76	57	55	CH22	F10
	4"	229	241	305	145	102	82	78	CH22	F10
20	6"	394	406	457	230	152	136	126	CH27	F12
SS 1	8"	457	470	521	265	203	335	315	Ø40	F14
	10"	533	546	559	315	254	490	465	Ø40	F14
P	12"	610	622	635	355	305	720	685	Ø50	F16
O	14"	686	699	762	385	336	905	855	Ø50	F16
	16"	762	775	838	420	387	1050	995	Ø60	F25
	18"	864	876	914	470	438	1620	1534	Ø60	F25
	20"	914	927	991	505	489	2110	1950	Ø80	F25
	24"	1067	1080	1143	610	590	3072	2900	Ø80	F25

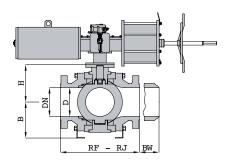
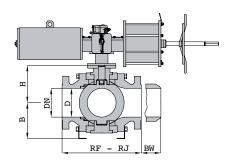



Fig. 230-3

	Overall	dimen	sions	and si	zes in	mm	Weigh	t in Kg	Valve	top	
	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	
	2"	216	232	216	100	51	29	26	CH22	F10	
	3"	283	298	283	125	76	65	55	CH22	F10	
	4"	305	321	305	145	102	110	92	CH22	F10	
300	6"	403	419	457	230	152	150	135	CH27	F12	
	8"	502	518	521	265	203	370	325	Ø40	F14	
SS	10"	568	584	559	315	254	530	460	Ø40	F14	
Š	12"	648	664	635	355	305	768	665	Ø50	F16	
$\overline{0}$	14"	762	778	762	385	336	940	860	Ø50	F16	
	16"	838	854	838	420	387	1430	1210	Ø60	F25	
	18"	914	930	914	470	438	1895	1690	Ø80	F25	
	20"	991	1010	991	505	489	2270	2031	Ø80	F25	
	24"	1143	1165	1143	610	590	3780	3428	Ø90	F30	

Fig. 230-6

	Overall	dimen	sions	and si	izes in	mm	Weigh	t in Kg	Valve	e top	
	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	ı
	2"	292	295	292	100	51	34	26	CH22	F10	ı
	3"	356	359	356	125	76	70	61	CH22	F10	ı
	4"	432	435	432	145	102	134	118	Ø32	F12	ı
009	6"	559	562	559	230	152	285	240	Ø40	F14	ı
	8"	660	664	660	265	203	480	420	Ø45	F14	l
SS	10"	788	791	788	315	254	690	560	Ø50	F16	ı
4	12"	838	841	838	355	305	925	775	Ø60	F25	l
$\bar{\circ}$	14"	889	892	889	385	336	1240	1080	Ø80	F25	ı
	16"	991	994	991	420	387	1595	1345	Ø80	F25	l
	18"	1092	1095	1092	470	438	2327	2065	Ø90	F30	
	20"	1194	1200	1194	505	489	2827	2509	Ø90	F30	
	24"	1397	1407	1397	610	590	4498	4190	Ø115	F35	
	26"	1448	1461	1448	720	635	5155	4845	Ø130	F40	

^{*} Stem dimension ** Actuator coupling flange

Full bore Deltaflux

Fig. 230-9

	C	Overall	dimer	sions	and s	izes in	mm.	Weigh	t in Kg	Valv	e top	-
		DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	
		2" -	368	371	368	- 110 -	51	- 53	53	CH22	F10	
900		3"	381	384	381	130	76	98	98	Ø32	F12	
		4"	457	460	457	155	102	175	175	Ø32	F12	
CLASS		6"	610	613	610	191	152	395	395	Ø45	F14	
4		8"	737	740	737	225	203	580	580	Ø50	F16	
O		10"	838	841	838	280	254	850	850	Ø50	F16	
		12"	925	968	965	332	305	1250	1250	Ø80	F25	
		14"	1029	1038	1029	375	324	1640	1640	Ø80	F25	
		16"	1130	1140	1130	425	375	2050	2050	Ø90"	F30	-

Fig. 230-15

	Overall	dimer	sions	and s	izes in	mm'	Weigh	t in Kg	Valv	e top	
	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	
	2" "	368	371	368	110	51	56	34	CH22	F10	٠
500	3"	470	473	470	135	76	129	114	Ø32	F12	ı
15	4" -	546	549	546	160	102	209	146	Ø32	F12	٠
· S	6"	705	711	705	230	146	590	445	Ø45	F14	ı
ASS	- 8" -	832	841	-832	- 270 -	194	-780	- 560 -	Ø60-	F25	
72	10"	991	1000	991	325	241	1220	850	Ø80	F25	ı
	12"	1130	1146	1130	365	289	1690	1270	Ø80	F25	
	14"	1257	1276	1257	418	318	2850	2105	Ø90	F30	ı
	16"	1384	1406	1384	460	362	4100	3190	Ø115	F35	
											ı

^{*} Stem dimension

The execution with other dimensions than the ones given in the table can be assessed according to the specific needs.

Dimensioni d'ingombro valvole di regolazione Deltaflux a passaggio ridotto

Fig. 260-1

	٠	Overall	dimer	sions	and si	izes in	mm'	Weigh	t in Kg	Valve	e top	
	٠	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	
		3"X 2"	203	216	283	100	51	- 30	27	CH22	F10	
	٠	4"X 3"	229	241	305	125	76	65	60	CH22	F10	
		6" X 4"	394	406	457	145	102	91	84	CH22	F10	
20	J	8"X 6"	457	470	521	230	152	165	155	CH27	F12	
Ψ.		10"X 8"	533	546	559	265	203	350	325	Ø40	F14	
SS	J	12"X 8"	610	622	635	265	203	420	390	Ø40	F14	
CLA		12"X 10"	610	622	635	315	254	540	505	Ø40	F14	L
ರ		14"X 10"	686	699	762	315	254	680	640	Ø40	F14	
		14"X 12"	686	699	762	355	305	730	680	Ø50	F16	ľ
	1	16"X14"	762	775	838	385	336	980	930	Ø50	F16	
		18"X16"	864	876	914	420	387	1180	1115	Ø60	F25	1
	٠	20"X18"	914	927	991	470	438	1710	1624	Ø60	F25	
		22"X 20"	991	1004	1092	505	489	2150	1980	Ø80	F25	-
	٠	24"X20"	1067	1080	1143	505	489	2250	2070	Ø80	F25	

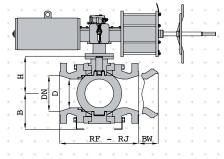


Fig. 260-3

	Overall	dimer	sions	and s	izes in	mm	Weigh	t in Kg	Valve	e top	-
	DN	RF	RJ	BW	В	D	RF-RJ	BW	Ø ST*	ISO**	
	-3"X 2"	283	298	283	- 100 -	51	- 31	- 28 -	CH22	F10	-
	4"X 3"	305	321	305	125	76	70	59	CH22	F10	
	6" X 4"	403	419	457	145	102	.119	. 99	CH22	F10	
300	8"X 6"	502	518	521	230	152	162	146	CH27	F12	
	10"X 8"	568	584	559	265	203	400	351	Ø40	F14	
LASS	12"X 8"	648	664	635	265	203	426	374	Ø40	F14	
₹.	12"X 10"	648	664	635	315	254	572	497	Ø50	F16	Ĺ
O	14"X 10"	762	778	762	315	254	610	529	Ø50	F16	
	14"X 12"	762	778	762	355	305	829	718	Ø50	F16	ľ
	16"X14"	838	854	838	385	336	1015	929	Ø60	F25	
	18"X16"	914	930	914	420	387	1544	1307	Ø60	F25	-
	20"X18"	991	1010	991	470	438	2047	1825	Ø80	F25	
	22"X 20"	1093	1115	1093	505	489	2452	2193	Ø90	F30	-
	24"X20"	1143	1165	1143	505	489	2610	2335	Ø90	F30	

^{*} Stem dimension

^{**} Actuator coupling flange

^{**} Actuator coupling flange

Reduced

Deltaflux

Fig. 260-6

	Overall	dimen	sions a	nd size	s in m	m	Weigh	t in Kg	Valve top		
	DN	RF	RJ	BW	В	D	RF-RJ	BW	fl ST*	ISO**	
	3"X 2"	356	359	356	100	51	37	29	CH22	F10	
	4"X 3"	432	435	432	125	76	76	66	CH22	F10	
	6" X 4"	559	562	559	145	102	145	127	fl32	F12	
009	8"X 6"	660	664	660	230	152	308	259	fl40	F14	
	10"X 8"	788	791	788	265	203	518	454	fl45	F14	
ASS	12"X 8"	838	841	838	265	203	552	483	fl45	F14	
3.	12"X 10"	838	841	838	315	254	754	605	fl50	F16	
۱	14"X 10"	889	892	889	315	254	793	644	fl50	F16	
	14"X 12"	889	892	889	355	305	999	837	fl60	F25	
	16"X14"	991	994	991	385	336	1339	1166	fl80	F25	
	18"X16"	1092	1095	1092	420	387	1723	1453	f180	F25	
	20"X18"	1194	1200	1194	470	438	2513	2230	fl90	F30	
	22"X 20"	1296	1305	1296	505	489	3053	2710	f190	F30	
	24"X20"	1397	1407	1397	505	489	3251	2885	fl115	F35	

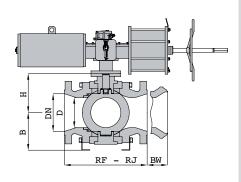


Fig. 260-9

	Overall	dimen	sions a	nd size	es in m	m	Weigh	t in Kg	Valv	e top	
	DN	RF	RJ	BW	В	D	RF-RJ	BW	fl ST*	ISO**	
	3"x 2"	381	384	381	110	51	59	51	CH22	F10	
	4"x 3"	457	460	457	130	76	105	85	fl32	F12	
	6"x 4"	610	613	610	155	102	240	190	fl32	F12	
900	8"x 6"	737	740	737	191	152	485	345	fl45	F14	
	10"x 8"	838	841	838	225	203	685	560	fl50	F16	
ASS	12"x 10"	965	968	965	280	254	970	790	fl50	F16	
딩	14"x 10"	1029	1038	1029	280	254	1170	990	fl50	F16	
_	16"x 12"	1130	1140	1130	332	305	1980	1710	fl80	F25	
	18"x 14"	1291	1232	1219	375	324	1050	1750	fl80	F25	
	20"x 16"	1321	1333	1321	425	375	2630	1920	fl90	F30	

The execution with other dimensions than the ones given in the table can be assessed according to the specific needs.

Fig. 260-15

	Overall dimensions and sizes in mm						Weight in Kg		Valve top	
	DN	RF	RJ	BW	В	D	RF-RJ	BW	fl ST*	ISO**
CLASS 1500	3"x 2"	470	473	470	110	51	85	79	CH22	F10
	4"x 3"	546	549	546	135	76	165	138	fl32	F12
	6"x 4"	705	711	705	160	102	315	255	fl32	F12
	8"x 6"	832	841	832	230	146	720	495	fl45	F14
	10"x 8"	991	1000	991	270	194	950	590	f160	F25
	12"x 10"	1130	1146	1130	325	241	1350	910	fl80	F25
	14"x 10"	1257	1276	1257	325	241	1585	1190	fl80	F25
	16"x 12"	1384	1408	1384	365	289	2250	1310	fl90	F30
	18"x 14"	1537	1559	1537	418	318	3320	2350	fl115	F35

- * Stem dimension
- ** Actuator coupling flange

Pietro Fiorentini Solutions

HIPPS

Pressure reducing stations

Multiphase meter

www.fiorentini.com

Pietro Fiorentini S.p.A. via E.Fermi 8/10 I-36057 Arcugnano (VI) Italy Tel. +39 0444 968.511 Fax. +39 0444 960.468

via Rosellini 1 I-20124 Milano Italy

Tel. +39 02 696.14.21 Fax. +39 02 688.04.57

The data contained is not binding. We reserve the right to changes without prior notice.

CT-s540-E September 2010